

powergoop

Model Selection Guide

		Input			Efficiency			
Model	Voltage (V)		Current (A)	Voltage	Current	Power	Linciency	
	Range Nominal		Full load	(V)	(A)	(W)	Typ.(%)	
ACE60-050S-60	90-264	230	0.25	5	10	50	86	
ACE60-120S-60	90-264	230	0.30	12	5	60	88	
ACE60-150S-60	90-264	230	0.30	15	4	60	88	
ACE60-240S-60	90-264	230	0.29	24	2.5	60	89	
ACE60-360S-60	90-264	230	0.29	36	1.67	60	89	
ACE60-480S-60	90-264	230	0.29	48	1.25	60	90	

Typical @ Ta=+25 °C under nominal line voltage conditions unless noted

Description

AC series - Encapsulated 60W converter is a 60W Isolated, regulated ac/dc encapsulated power module with 120W peak load lasting 10 seconds and long hold-up time setting by external capacitors. It features a high efficiency up to 90%, wide working ambient temperature range -40~+80°C, no minimum load required, 4kVac reinforced insulation, OVP, SCP, etc. These power modules use advanced power processing, control and packaging technologies and are suitable for all kinds of systems, such as household appliances, medical devices, industrial control communication systems and network equipment, etc.

ACE60 Series Block Diagram

Electrical Specifications

(Typical @ Ta=+25°C under nominal line voltage conditions unless noted.)

Input Specifications

Parameter	Notes and Conditions	Min.	Тур.	Max.	Unit	
Operating Input Voltage Ranges		90	230	264	VAC	
Operating Input Frequency Ranges		47		63	Hz	
Input Current				1.5	А	
Inrush Current	cold start at 230Vac, 25 $^\circ\!\mathrm{C}$			100	А	
Power Factor		EN61000-3-2 Class A				
Leakage Current				100	μA	

powergoop

Output Specifications

Parameter	Notes and Conditions	Min.	Тур.	Max.	Unit	
Output Voltage Accuracy	100% Load			±1.5	%	
Line Regulation	High Line to Low Line			±0.5	%	
Load Regulation	0% to 100% Load			±1	%	
Output Ripple & Noise Voltage	Bandwidth 20MHz and with 10uF MLCC Output Capacitor			1.5	%V _{pk-pk}	
Minimum Load		0			А	
Hold Up Time	at full load & 115 VAC	8			mSec.	
Over Voltage Protection		120		140	%	
Over current Protection		120		140	%	
Short-circuit Protection		Hiccup mode (Auto-Recovery)				

General Specifications & Environmental Specifications

Parameter	Notes and Conditions	Min.	Тур.	Max.	Unit	
Switching Frequency			67		kHz	
Storage Temperature Range	All models	-55		100	°C	
Operating Temperature	All models, derating from 100% at 50°C to 50% at 80°C	-40		80	°C	
Humidity (non condensing)	All models			95	%	
Operating Altitude				3000	m	
Isolation Voltage	Input to Output	4000			VAC	
Weight		175 (6.17) g (c			g (oz.)	
Dimensions		2.10" x 2.10" x 1.10" (53.3 x 53.3 x 27.9mm				
Case Material	Plastic					

Standards Compliance

Parameter	Standard	Test Conditions	Performance Criteria
Environmental Compliance	Reach; RoHS		PASS
EMI	EN55032		Class A / Class B
ESD	EN61000-4-2	±4 kV Air Discharge ±4 kV Contact Discharge	Crit. A
Radiated Immunity	EN61000-4-3	Level 2, 3 V/m	Crit. A
Fast Transient	EN61000-4-4	±2 kV Applied	Crit. A
Surge	EN61000-4-5	±2 kV Applied	Crit. A
Conducted Immunity	EN61000-4-6	Level 2, 3 V rms	Crit. A

It is recommended to protect the input by fuses or other protection devices.

The information and specifications contained in this data sheet are believed to be correct at time of publication. All specifications are subject to change without notice. No rights under any patent accompany the sale of any such products or information contained herein.

powergood

ACE60 Series

Mechanical Dimensions & Pin Assignments

Conducted EMI

Input terminal value (typ.) ACE60-120S-60 @Vin = 230VAC, lout = 2A

The fundamental switching frequency of the module is 63 kHz.

Characteristic Curves

Testing conditions are at typical input, Ta=+25°C, full load (horizontal mount) Unless otherwise indicated

Figure 1 : Efficiency at Minimum, Nominal and Maximum Input Voltages VS. Output Load.

Typical Start-up waveform at Full load.

Figure 4 : Output Voltage Ripple & Noise at full load. (Vin: Typical, With Output Capacitor to add 1uF MLCC)

Trimming Output Voltage – for Single output models

Only the single output converters have a trim function. That allows users to adjust the output voltage from +10% to -10%, please refer to the trim table that follow for details. Adjustments to the output voltage can be used with a simple fixed resistor as shown in Figures 1 and 2. A single fixed resistor can increase or decrease the output voltage depending on its connection.

Note:

- X Trim adjustments higher than the specified range can have an adverse effect on the converter's performance and are not recommended.
- % If the trim function is not used, leave the trim pin open.

Figure 1. Trim Connections To increase Output Voltages Using Fixed Resistors

	Trim up resistor value(KΩ)										
Vout	ut 1% 2% 3% 4% 5% 6% 7% 8%							8%	9%	10%	
5	219.55	96.27	55.18	34.64	22.31	14.09	8.22	3.82	0.39	0.00	
12	224.33	99.66	58.11	37.33	24.87	16.55	10.62	6.17	2.70	0.00	
15	181.65	81.72	48.42	31.76	21.77	15.11	10.35	6.78	4.01	0.00	
24	265.91	120.45	71.97	47.73	33.18	23.48	16.56	11.36	7.32	0.00	
36	627.7	279.9	163.9	105.9	71.10	48.00	31.40	19.0	9.30	0.00	
48	1560.67	695.84	407.56	263.42	176.93	119.28	78.10	47.21	23.19	0.00	

	Trim down resistor value(KΩ)										
Vout	1%	2%	3%	4%	5%	6%	7%	8%	9%	10%	
5	716.45	339.73	214.15	151.36	113.69	88.58	70.64	57.18	46.72	38.35	
12	913.67	438.34	279.89	200.67	153.13	121.45	98.81	81.83	68.63	58.07	
15	969.95	469.88	303.18	219.84	169.83	136.49	112.68	94.82	80.93	69.82	
24	2456.09	1201.55	783.36	574.27	448.82	365.18	305.44	260.64	225.79	197.91	
36	9136.3	4484.1	2933.4	2158.1	1692.9	1382.7	1161.2	995.0	865.8	7624	
48	30969.33	15234.16	9989.11	7366.58	5793.07	4744.05	3994.76	3432.79	2995.70	2646.03	

Output Ripple Noise

The two copper strips simulate real-world PCB impedances between the converter and its load. Scope measurements should be made using BNC connectors or The probe ground should be less than 1/2 inch and soldered directly to the fixture.

All external capacitors should have appropriate voltage ratings and be located as close to the converter as possible.

Temperature variations for all relevant parameters should be taken into consideration. The most effective combination of external I/O capacitors will be a function of line voltage and source impedance, as well as particular load and layout conditions. See Figure 3.

Figure 3. Measuring Output Ripple/Noise(20MHz bandwidth)

PowerGood Tech. Research Co., Ltd.

Address : 5F, No. 40, Keya Rd., Daya Dist., Taichung City 42881, Taiwan

Website : www.powergood.com Email : sales1@powergood.com TEL : +886 4 2568 0448 FAX : +886 4 2568 0438

